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A B S T R A C T

Even when compiled from source, executables are at most as trustworthy as the compiler that pro�
duced them. Considering that the compilers commonly used to build Linux�based operating systems
are usually compiled with existing binary versions of themselves, their trustworthiness can not be
guaranteed. The process of building a compiler with a different compiler, thus breaking the loop, is
called “bootstrapping”.

In this thesis, we present our implementation of a full�source bootstrap for the NixOS Linux distri�
bution. We build a Linux environment with the Nix package manager from a minimal, hand�auditable
binary seed, and then use it to install NixOS. For this, we use a version of Nixpkgs—the package set
on which NixOS is based—that we also modified to be bootstrapped from a hand�auditable binary
seed. Although there are compilers in Nixpkgs that we can not build from the bootstrap seed yet, the
result is a NixOS installation, most parts of which are fully compiled from source. Finally, we discuss
the practicality of the full�source bootstrap and how it can be improved upon so that every NixOS
user can benefit from the advances in trustworthiness we have achieved.
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K U R Z F A S S U N G

Selbst wenn sie aus Quelltext kompiliert wurden, können ausführbare Programmdateien maximal
so vertrauenswürdig sein wie der Compiler, durch den sie erzeugt wurden. Die Compiler, die zum
Übersetzen Linux�basierter Betriebssysteme üblicherweise verwendet werden, werden für gewöhn�
lich mittels einer existierenden Kopie ihrer selbst kompiliert. Aufgrund der Tatsache, dass diese
als ausführbare Dateien vorliegen, kann ihre Vertrauenswürdigkeit nicht garantiert werden. Der
Vorgang, einen solchen selbstübersetzenden Compiler mit Hilfe eines anderen Compilers zu bauen,
um diesen Kreis zu durchbrechen, wird als „Bootstrapping“ bezeichnet.

In dieser Arbeit präsentieren wir unsere Umsetzung eines vollständigen Bootstraps für die Linux�
distribution NixOS. Wir bauen eine Linux�Umgebung mit dem Paketverwaltungsprogramm Nix aus
einer minimalen, menschenüberprüfbaren Ausgangsbinärdatei und benutzen diese, um NixOS zu
installieren. Zu diesem Zweck verwenden wir eine modifizierte Version von Nixpkgs—dem Paketsatz,
auf dem NixOS basiert—welche ebenfalls aus einer menschenüberprüfbaren Ausgangsbinärdatei
erzeugt wird. Ungeachtet der Tatsache, dass Nixpkgs Compiler enthält, welche wir noch nicht aus
der Ausgangsbinärdatei erzeugen können, ist das Resultat eine NixOS�Installation, die, zum überwie�
genden Teil, vollständig aus Quelltext erzeugt wurde. Schließlich erörtern wir die Zweckmäßigkeit
des vollständigen Bootstraps und wie dieser verbessert werden kann, sodass alle Anwender*innen
von NixOS von den Fortschritten in Sachen Vertrauenswürdigkeit, die wir erreicht haben, profitieren
können.
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I N T R O D U C T I O N 1
To use any computer system effectively, the user must trust that the software running on it will act
in their best interests. With proprietary software, which is available only in binary form, this trust has
to be awarded uncritically, based solely on the vendor’s claims and reputation.

Free and open�source software (FOSS) is generally considered more trustworthy because the
source code used to compile the executables is publicly available, allowing users and independent
security researchers to review it. Many FOSS projects are developed fully in the open, allowing
anyone to track and investigate every change to their source code. In theory, the user could even read
and then compile it on their own hardware, fully absolving them from having to trust the author’s or
any third party’s claims about the software.

1.1 Binary Packages

On Linux systems, software is often installed through a package manager. Usually, this is the one that
ships with the user’s distribution of choice. A lot of the time, the software included in a distribution’s
official package repository¹, as well as the build scripts that were used to create the packages, are
FOSS. The user, on the other hand, only downloads binaries built by the maintainers of the package
repositories. However, popular package managers like the Debian Package Manager (dpkg) and the
RPM Package Manager (RPM) offer no easy way to verify that the packages were actually built from
the available source code, requiring the user to trust the packages’ supplier, just like with proprietary
software.

Source�based package managers, like Gentoo’s Portage [1], solve this by downloading the
package’s source code and compiling it locally on the user’s machine instead. While this solves the
problem of having to trust someone else with building the executables, local compilation also signif�
icantly increases the time and computing power required to install a new package, thereby making
source�based package managers less convenient to use than binary�based ones.

Nix, a source�based package manager that we will introduce in greater detail in Section 2.1,
circumvents this inconvenience by using a binary cache. By default, instead of building everything
locally, Nix queries the configured binary caches to check if they contain a prebuilt copy of the package
and, if so, uses that instead. In this configuration, Nix behaves almost like a binary�based package
manager. Unlike with those, the retrieval of prebuilt packages (“substitution” as Nix calls it) can be
deactivated if the user does not want to trust the binary cache operators. Even if it is turned on,

¹the place from where the package manager obtains the software

1



1.1 Introduction – Binary Packages

Nix can easily rebuild any package locally and compare the result to the one obtained from a binary
cache².

1.2 Trusting Compilers

To be able to ultimately trust that the produced binaries behave exactly as described by the source
code they were built from, building just the package itself locally is not enough: As K. Thompson
demonstrated in his 1984 Turing Award lecture “Reflections on Trusting Trust” [2], any executable,
no matter how trustworthy its source code may be, can only ever be as trustworthy as the compiler
that was used to build it. That is because a malicious compiler could be created that injects malicious
code into the executables it produces.

Thompson suggests that this could result in a virtually undetectable trojan when applied to a self�
hosting compiler. A compiler is self�hosting if it can compile itself. Self�hosting compilers are usually
built using an earlier version of themselves. Such a compiler could be modified to detect when it is
compiling itself, and inject the trojan code into the new executable. Once a first infected compiler has
been built, all subsequent rebuilds will also carry the trojan, even if it is removed from the source code
afterward. While Thompson used the original UNIX C compiler for his demonstration in the lecture, a
significant number of the compilers used to build the software running on modern computer systems,
like gcc, rustc, and go, are self�hosting and therefore vulnerable in the same way.

Circumventing this kind of attack requires building the compiler using another compiler. The
process of building a self�hosting compiler “from scratch” without using a previous version of the
compiler is called “bootstrapping”. Because the bootstrap compiler could be similarly modified to
infect the other compiler when used for the bootstrap, it, too, needs to be bootstrapped from another
compiler, creating a bootstrap chain. Ultimately, this means that a trustworthy system has to be
bootstrapped from a compiler that is written in machine code by hand and therefore can be executed
directly, without requiring a compiler to build it. That is what is called a “full�source bootstrap”³, as
everything is built from human�readable sources.

Because of the way Nix is designed, packages can only use programs from other Nix packages in
their build scripts. That means it is not possible to use a compiler already present on the host within
a Nix build. Cyclic dependencies are not possible either. Therefore, the entire dependency tree of
Nixpkgs, the Nix package repository, is rooted in a single package, bootstrapTools, which contains
an initial set of prebuilt binaries that are used to bootstrap the rest of the package set [4, /pkgs/
stdenv/linux], [5, p. 177], [6, pp. 21–24]. This makes NixOS, the Linux distribution built from the
packages in Nixpkgs, an ideal candidate for attempting the full�source bootstrap of a complete Linux
distribution.

²nix-build --check
³The term “full�source bootstrap” was coined by the Guix project [3]. See Section 6.1

2



Introduction 1

1.3 Research Questions

This thesis answers the following questions:

• RQ1 Is it possible to construct a full�source bootstrap chain for the Nix package manager?

• RQ2 Is it possible to construct a full�source bootstrap chain for Nixpkgs by replacing the
bootstrapTools package?

• RQ3 How can these two bootstrap chains be combined to create a full�source bootstrap
for NixOS?

• RQ4 Can the bootstrap chain be executed fully offline?

• RQ5 Is it possible to create a NixOS ISO image that can be used to install the bootstrapped
NixOS on other computers without having to run the full bootstrap on them first?

• RQ6 How can the bootstrap be adapted to architectures beyond x86�based systems?

• RQ7 Does the bootstrap chain still include any binaries besides the initial bootstrap seeds?

3
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B A C K G R O U N D 2
2.1 Nix

As already touched on in Section 1.1, Nix is a purely functional, source�based package manager. It
was created by E. Dolstra and is described in his 2006 doctoral thesis The Purely Functional Software
Deployment Model [5].

2.1.1 The Nix Store

Unlike traditional package managers, Nix does not install any package files to the directories specified
by the Filesystem Hierarchy Standard (FHS) [7]. Instead, all downloaded packages4 are kept in a
single central location on the file system called the Nix store, usually located at /nix/store.5 [5,
p. 19]

The packages in the Nix store are stored unpacked under paths of the form <hash>-<name>, where
<name> is the package’s name as specified in its definition and <hash> is a cryptographic hash calcu�
lated from the package’s inputs.6 The inputs are the package’s build instructions, which include the
store paths for all dependencies of the package. This way, every Nix package has a globally unique
store path. If anything about the package definition changes, its store path changes, too, causing a
rebuild. If the calculated store path already exists, the build is skipped, so that if a package definition
is modified and later reverted, the old version does not have to be built twice. Because the hash is
calculated from data that includes the store paths of all dependencies, a change to a package’s store
path causes the store paths of all packages that depend on it to change as well, ensuring that all
dependents are rebuilt against the changed version. [5, pp. 19–21]

Due to the fact that all Nix packages are linked directly against their dependencies’ store paths,
their executables can be used directly from the Nix store. That is why Nix does not need to install
packages into global directories like other package managers do. Because of this architecture, Nix can
keep multiple versions of a package in its store at the same time, allowing it to install two programs
side�by�side, even when they depend on two different versions of the same dependency that would
otherwise be incompatible. [5, pp. 21, 23–24]

4The original doctoral thesis [5, p. 19] uses the term component for what we refer to as a package here. Current
documentation [8] uses package instead, and we will follow that in this thesis.

5Even though Nix does not mandate the Nix store be in that location, packages built on one installation are only
compatible with Nix installations using the same store location. Because most users want to use official binary cache,
it is not practical to diverge from the default.

6As an example, a full store path for bash looks like this:
/nix/store/aqbddpi6p0bjfdlgswjry90n3sgjsqsy-bash-interactive-5.2p37

5



2.1 Background – Nix

By default, Nix does not delete anything from the Nix store, unless the user manually triggers a
garbage collector run. When this happens, all store paths that are not referenced as run�time depen�
dencies by any package registered as a garbage collector root are deleted. [5, p. 124] Among others,
all packages explicitly installed into the system or user environment are automatically referenced by
a garbage collector root.

Even though packages are kept unpacked in the Nix store, Nix still includes a bespoke package file
format: Nix Archives (NARs). [5, p. 92] It is primarily used for binary caches, which are directories
containing NAR files, usually served via HTTP. When Nix is instructed to build a package, it first
checks if its store path is already present locally. If not, it checks if the store path is available on one of
the configured substituters. These can be either other Nix stores (e.g., on another machine accessed
via SSH) or binary caches. [8, ch. 8.6.1] If the store path was found on a substituter, Nix downloads
(and, in case of a binary cache, unpacks) it to the local Nix store. Only if it cannot be substituted is
the package built from scratch.7

2.1.2 Nix, the Programming Language

Nix packages are defined using expressions written in Nix’s domain�specific language (DSL), which
is also called Nix. To avoid confusion between Nix, the package manager/interpreter, and Nix, the
programming language, we will always refer to the latter as the Nix DSL or Nix Language in this
thesis.

The Nix DSL is a lazily evaluated, purely functional programming language. In addition to types
also found in other functional programming languages — numbers (integer, float), strings, booleans,
lists, records (called attribute sets (attrsets)) — the Nix DSL also has the special types path and string
with context.8 [5, pp. 25, 62–63, 66–67, 71, 73], [8, ch. 5.1]

Path literals can be used to refer to file system locations in place of strings. Relative path literals
are resolved relative to the location of the .nix file they appear in. When a path is combined with
another string—for example, when used in a build script via string interpolation—the file or directory
it points to is copied to the Nix store, producing a string with context. [5, p. 67], [8, ch. 5.1.1]

Strings with context behave exactly like regular strings in most circumstances. The context, acces�
sible through the built�in function getContext, associates the string with one or more store paths.
When two strings with context are combined, their contexts are merged. Nix uses string context to
track the packages’ build�time dependencies.9 [8, ch. 5.1.1] Run�time dependencies are detected
automatically as well; however, this happens at build�time, not during evaluation: After the build has
been completed, Nix scans the file(s) in the resulting store path for occurrences of other store paths.
The paths that are found this way become the package’s run�time dependencies. [5, pp. 23–24]

The central element of the Nix Language is the function derivation. When it is evaluated, Nix
creates (instantiates) a store derivation from the function arguments and returns a derivation. A store
derivation is a .drv file in the Nix store that contains a serialized representation of everything needed
to perform the actual build. The package can be built (realized) from the store derivation without
evaluating any Nix DSL code.10 [5, p. 39]

7Unless the package explicitly requests being built by setting allowSubstitutes = false. [8, ch. 5.4.1.1]
8According to [5, p. 67], there is also a “URI” type. While the syntax for it still works, it evaluates to a regular string

on modern versions of Nix.
9String context was introduced in Nix 0.10 [8, ch. 14.53] and is therefore not mentioned in the doctoral thesis.

Instead, paths pointing to other derivations had to be created using the—since removed—subpath operator. [5, pp.
72–73]

10nix-store --realise /nix/store/<hash>-<name>.drv
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The derivation returned from the call to derivation is an attribute set containing strings with
context that link it to the store derivation. An example of a minimum viable derivation call is shown
in Listing 1.

1 let Nix
2   pkgs = import <nixpkgs> { system = "x86_64-linux"; };
3 in
4 derivation {
5   name = "example";
6   builder = "${pkgs.bash}/bin/bash";
7   args = [ "-c" "echo hello world > $out" ];
8   system = "x86_64-linux";
9 }

Listing 1: Minimum viable call to derivation

In this example, we create a package called “example” that contains a single file with the text “hello
world”. Packages are built by running the program specified in builder (the bash package from
the 64�bit x86 version of Nixpkgs in this case) with the arguments specified in args. The system
attribute tells Nix on which platform the package can be built. Aside from a set of special cases, all
other attributes are passed to the builder as environment variables. [5, p. 28], [8, ch. 5.4.1, 5.4.1.1]

When evaluated, the Nix DSL code in Listing 1 produces a derivation that looks like this:

1 «derivation /nix/store/3abxnap3n654yfxdyccjwp37c6gjj9m4-example.drv»

Listing 2: Stringified derivation

As stated before, a derivation is actually just an attribute set. Nix detects that this attrset is a derivation
because it contains type = "derivation"; [5, p. 101] and uses this special syntax when printing
it. Internally, the derivation looks like Listing 3.

To ensure that package builds behave as much as possible like functions in a purely functional
programming language, whose result depends purely on their inputs, they are executed in a sandbox,
isolated from the host system.¹¹. Besides preventing the builder from accessing host files, it also blocks
network access. It is possible to supply the hash of the build output to the derivation call to create a
fixed�output derivation (FOD). In this case, the network restriction is lifted because the file is checked
against the supplied hash and can therefore still be considered pure. The hash in the path of a FOD is
calculated from the supplied hash rather than the derivation inputs, so that different FODs with the
same hash produce the same store path, and it only has to be built once. [5, p. 106], [8, ch. 8.6.1]

Because the Nix DSL is lazily evaluated, only the derivations that are actually relevant for the
current operation (e.g., building a specific package) are evaluated and therefore instantiated. [5,
pp. 62–64] This is especially relevant in the context of large package sets like Nixpkgs. Without
lazy evaluation, Nix would have to evaluate and instantiate all packages in Nixpkgs every time it is
imported.

¹¹The build sandbox has been introduced in Nix 0.11 [8, ch. 14.51] and is therefore not mentioned in the original
thesis. However, the idea of trying to prevent host�system data from leaking into the build process has been discussed
in [5, pp. 179–180].
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1 { Nix
2   all = [ «derivation /nix/store/3ab...9m4-example.drv» ];
3   args = [ "-c" "echo hello world > $out" ];
4   builder = "/nix/store/aqb...qsy-bash-interactive-5.2p37/bin/bash";
5   drvAttrs = {
6     args = [ "-c" "echo hello world > $out" ];
7     builder = "/nix/store/aqb...qsy-bash-interactive-5.2p37/bin/bash";
8     name = "example";
9     system = "x86_64-linux";
10   };
11   drvPath = "/nix/store/3ab…9m4-example.drv";
12   name = "example";
13   out = «derivation /nix/store/3ab...9m4-example.drv»;
14   outPath = "/nix/store/n1x...s2k-example";
15   outputName = "out";
16   system = "x86_64-linux";
17   type = "derivation";
18 }

Store paths have been shortened for readability.

Listing 3: Derivation attrset

2.1.3 Nixpkgs

Nixpkgs is the Nix project’s official collection of Nix package definitions. It is provided as a single git
repository. [4] With over 120000 packages,¹² it is the largest and most up�to�date package repository
tracked by the indexing website repology. [9]

While the build definitions themselves are FOSS, the packaged software includes both FOSS and
proprietary programs. By default, however, evaluating a proprietary package’s definition produces
an error. It must be explicitly allowed by the user, either globally or for individual packages. We do
not set that option and can therefore assume that everything we use from Nixpkgs is FOSS and can
be built from source. [10, #sec-allow-unfree]

2.1.3.1 stdenv

A central element of Nixpkgs is stdenv, the standard environment. It consists of a set of tools
commonly needed for building software, and fulfills a similar role to packages like build-essential
on Debian or base-devel on Arch Linux. [5, pp. 174–175]

¹²There are 129435 packages in the 25.05 version of Nixpkgs at the time of writing (2025�10�02). The current count
can be obtained with this command:
curl -sL 'https://channels.nixos.org/nixos-25.05/packages.json.br' | brotli -d | jq -r '.packages | keys | .[]' | wc -l
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Unlike those, stdenv is not installed onto the system. It is used through the function
stdenv.mkDerivation, which is a wrapper around the built�in derivation function. It accepts
all arguments accepted by derivation and can therefore be used as a drop�in replacement.
mkDerivation extends upon the built�in derivation by adding the packages contained in stdenv
to the build environment and providing a default builder, called the generic builder. [5, pp. 27, 175]

The generic builder is used when no other builder is specified. It is a shell script executed by bash.
When using the generic builder, the build process is split into the configure, build, check, and install
phases. Each phase has a default value intended to cover the common ./configure && make &&
make install build process shared by many, especially C, programs. If the default script for a phase
does not work for a given package, it can be selectively overwritten. Using the generic builder makes
the package definitions similar to those of other package managers, like Arch Linux’s PKGBUILD files or
the pass*.sh files from live-bootstrap, which will be introduced in Section 2.3. Virtually all packages
in Nixpkgs use mkDerivation and the generic builder; as a result, they depend on stdenv. [5, pp.
175–176]

example.nix Nix
1 { stdenv, fetchurl }:
2 stdenv.mkDerivation {
3   name = "example";
4   src = fetchurl {
5     url = "<url>";
6     sha256 = "<hash>";
7   };
8
9   configurePhase = ''
10     ./configure --prefix=$out
11   '';
12
13   buildPhase = ''
14     make
15   '';
16
17   installPhase = ''
18     make install
19   '';
20 }

example/sources
1 <url> <hash> example.tar.gz

example/pass1.sh Bash
1 src_configure () {
2     ./configure
3 }
4
5 src_compile () {
6     make
7 }
8
9 src_install () {

10     make DESTDIR="${DESTDIR}"
install

11 }

A Nix DSL function that is passed stdenv and fetchurl as argu�
ments and returns a derivation for the example package.

A sources and pass1.sh file that build the example package
as a live�bootstrap step. The package name is infered from the

directory name.

a) Nix b) live�bootstrap

Both formats can build this example package with the defaults for their respective phases, meaning that these files could be considerably
shorter. The commands are specified explicitly for illustration purposes.

Listing 4: Comparison of buildscript formats
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To add packages to the build environment in addition to the ones from stdenv, mkDerivation ac�
cepts a set of options, the most commonly used of which are buildInputs and nativeBuildInputs.
This split allows Nixpkgs packages to be cross�compiled easily. The stdenv derivation has three
inputs that define the platform on which builds are executed and the platform they target. The names
and purpose of the inputs are the same as the options GNU software, including the GNU Compiler
Collection (GCC), uses for this purpose:

• buildPlatform is the platform on which the build is executed.

• hostPlatform is the platform on which the produced binaries can be executed. It diverges
from buildPlatform during cross�compilation.

• targetPlatform is the platform the produced binaries target. It diverges from hostPlatform
when building a cross�compiler.

All packages that need to be built for the host platform (e.g., libraries) must be placed in
buildInputs, whereas all packages that need to be executed during the build process and for
that reason need to be able to run on the build platform (e.g., compilers) must be placed in
nativeBuildInputs. [10, #ssec-cross-platform-parameters, #ssec-stdenv-dependencies-
propagated]

To ensure the purity of the build environment, the packages in stdenv are built using Nix, as well,
thus creating a bootstrapping problem: Because Nix does not support cyclic dependencies, it is not
possible to use the stdenv packages to build a new stdenv directly in the way it would be done
with other package managers — by relying on the already globally installed versions of the tools. To
overcome this, Nixpkgs uses the package bootstrapTools, which contains precompiled versions of
the programs needed to create a minimal stdenv. These prebuilt binaries are downloaded as a FOD
and then used to bootstrap the “real” stdenv used throughout Nixpkgs. [4, /pkgs/stdenv/linux]

The files that make up the bootstrapTools package are themselves built from Nixpkgs.¹³ In that
way, Nixpkgs is similar to a self�hosting compiler: A working version of Nixpkgs is required to build
Nixpkgs.

2.1.3.2 Helper Functions

Aside from mkDerivation and its generic builder, Nixpkgs also provides other helper functions to
create common kinds of derivations. Among these trivial builders are functions for creating a single file
containing a specified string (writeText), creating a shell script in /bin (writeShellScriptBin),
and creating a single�file C program (writeCBin). [4, /pkgs/build-support/trivial-builders]

The fetchers are helper functions used to create derivations that download files from the internet.
They include fetuchurl for downloading a single file and fetchgit for downloading a specific
commit from a git repository. Other fetchers also perform post�processing on the downloaded files.
fetchzip, for example, extracts the archive after downloading, and fetchpatch normalizes the
downloaded patch by removing everything that’s not required for applying it (e.g., comments). All
fetchers in Nixpkgs produce FODs, which means Nix verifies the integrity of the downloaded files.
[4, /pkgs/build-support/fetch*]

The fetchers in Nixpkgs are not the only way to download files when using Nix. That would be a
problem for bootstrapping Nixpkgs, because the fetchers it provides depend on programs like curl
and git to perform the downloads. Nix has built�in versions of some fetchers, including fetchurl

¹³[4, /pkgs/stdenv/linux/make-boostrap-tools.nix]
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and fetchgit. These support a subset of the Nixpkgs fetchers’ API but differ in significant ways:
Even though the result is a store path, too, the built�in fetchers do not create derivations. Unlike the
Nixpkgs fetchers, where the download is performed by a program when building the derivation they
produce, the built�in fetchers are programmed so that Nix itself performs the download the moment
the call to the fetcher is evaluated. They also do not check whether the output path already exists
and proceed with the download anyway. [10, #chap-pkgs-fetchers]

A special case is the fetcher implemented in <nix/fetchurl.nix>, a file included with the Nix
source code. It implements a third API�compatible variant of fetchurl. This variant behaves like the
Nixpkgs fetchers: It creates a FOD that downloads the file when it is built. What sets it apart is that
it uses Nix’s built�in downloading capabilities and therefore does not depend on any package. [11, /
src/libexpr/fetchurl.nix]

In addition to packages and build helpers, Nixpkgs includes the standard library lib. It extends
the built�in functions with a set of functions written in the Nix Language, serving a similar purpose
as, e.g., Haskell’s prelude. [4, /lib] Finally, Nixpkgs contains the source code for NixOS.

2.1.4 NixOS

NixOS is a Linux distribution that is built completely from Nix packages. [4, /nixos], [6]
The entirety of NixOS, including installed programs and activated services, along with their config�
uration, is managed through a central, modular configuration system. Modules, including the user�
supplied system configuration14, are written in the Nix DSL. Nixpkgs contains modules for many
common services that can be used in any NixOS configuration without requiring explicit import. [4, /
nixos/modules]

Evaluating a NixOS configuration returns an attrset containing the derivations used to build the
configuration under the config.system.build attribute. The derivations describe different parts
of the system, like the kernel and the contents of /etc. Most importantly, config.system.build
contains the toplevel derivation, which provides everything that is needed to install the configu�
ration. Among other things, toplevel contains the activation script (activate) that applies the
configuration to the operating system (OS), and the bin/switch-to-configuration script that is
used to install a new configuration and activate it either immediately or on the next reboot. [12,
#sec-building-parts, #sec-switching-systems]

Because the Nix store can contain an arbitrary number of versions of the same package, the OS’s
previous state is preserved even when a new configuration is activated. All versions of the system
configuration are registered as garbage collector roots to prevent Nix from deleting them or the
packages installed by them, allowing NixOS to be rolled back to previous configurations, as long
as the user does not explicitly prompt their disposal. Every time NixOS boots, it runs the activation
script of the current configuration, allowing rollbacks to be performed directly in the bootloader. [12,
#sec-rollback, #sec-nix-gc]

Due to the fact that on NixOS everything is contained in the Nix store, the usual FHS [7] directories
are not populated. For that reason, binaries built for other Linux distributions cannot be executed on
NixOS without additional measures. [6, p. 70]

14Usually located in /etc/nixos/configuration.nix.

11
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2.2 Aux Foundation

The Aux project [13] aims to build an alternative to the Nixpkgs�centric Nix ecosystem. Their package
set is bootstrapped from a hand�auditable 256�byte binary seed. This bootstrap chain is called
Aux Foundation. [14], [15, /POSIX/x86/hex0-seed]

Currently, a working version is only available for 32�bit x86�based computers running Linux (or
i686-linux as Nix calls this platform). Aux Foundation produces a set of packages that is similar to
Nixpkgs’ stdenv. Instead of glibc, it uses musl as its C standard library. Besides that, it does not include
the complete set of packages in stdenv and therefore cannot be used as a drop�in replacement.

2.3 live-bootstrap

While a bootstrap chain like Aux Foundation may be able to build a package set without relying on
any existing compiler, it still requires an OS (and in the case of Aux Foundation, a Nix installation)
to run on. The OS itself might be compromised and could tamper with the files or the build process.
As a consequence, to fully trust the bootstrapped binaries, the OS on which the build runs needs to
be trustworthy as well.

The live-bootstrap [16] project solves this by bootstrapping an entire minimal Linux distribution.
The seed for live-bootstrap is a hand�auditable 512�byte15 binary, similar to the one used by Aux Foun-
dation. Instead of a Linux executable, the binary seed used by live-bootstrap is bootable on its own,
without requiring an OS. Like Aux Foundation, live-bootstrap currently only works on 32�bit x86�
based computers and uses musl instead of glibc.

To run the bootstrap, the seed is placed on a disk, along with the source code for the programs
to be bootstrapped. When a computer boots from this disk, it begins to execute the bootstrap chain.
First, it bootstraps the Tiny C Compiler (tcc), which is used to build fiwix [18], a small UNIX / Linux�
like kernel. After starting fiwix, the bootstrap chain continues by building GCC and using it to build
Linux. Finally, on Linux, a small set of userland tools and the Grand Unified Bootloader (GRUB) are
built and installed, resulting in a bootable Linux system. [16, /parts.rst]

live-bootstrap comes with its own simple package manager written in bash, which is used to define
the build scripts for the bootstrapped programs. An example of such a build script is shown in
Listing 4. Before the first bash has been built, kaem, a very simple shell script interpreter, is used
instead. Each package can define multiple build scripts, named pass1.sh, pass2.sh, and so on,
which are used when the package is built multiple times. That is a requirement in a bootstrapping
scenario like this because some programs can only be built with additional functionality if another
package is present, which might itself depend on the program. In such cases, the program is built once
with the feature disabled, used to build the other package, and then rebuilt again with the feature
enabled. [16, /steps/helpers.sh]

The bootstrap chain itself is defined in a custom manifest format, which is translated into scripts
by a C program during the bootstrap’s initial stages. Each line in the manifest contains an operation,
a parameter, and, optionally, a condition that must be met for that line to be executed. The available
operations include build, which builds the package passed as the parameter, improve, which runs a
script from the improve directory, and jump, which runs a script from the jump directory and, before
that, sets up /init so that the bootstrap may be resumed by executing it. The jump operation is used

15This is a full bootsector, including padding and a MBR partition table. The actual program is shorter than 512
bytes. [17, /builder-hex0-x86-stage1.hex0]
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to execute a newly built kernel that, after loading, runs /init and resumes the bootstrap. [16, /
steps/manifest, /seed/script-generator.c]

To ensure the reproducibility of the bootstrap, the SHA256SUMS.pkgs file contains hashes of the
build results for all packages. After a package is built, the result is checked against the stored hash.
[16, /steps/SHA256SUMS.pkgs]

The live-bootstrap repository contains a Python script that automates the bootstrap setup. The script
has four modes: In the chroot and bwrap modes, it runs the bootstrap in a sandboxed environment,
directly on the host OS. In bare-metal mode, the script produces disk images intended for use with a
physical computer. In QEMU mode, it creates disk images, as in bare-metal mode, intended for use
with a virtual machine (VM). After creating the images, it starts a QEMU VM in which the bootstrap
is executed. The difference between the images created in the bare-metal and QEMU modes is that,
while the bare-metal images display the log messages on the screen, the QEMU images use a serial
port instead. [16, /rootfs.py]

Even though the bootstrapped OS is minimal and not suitable for general�purpose use, it is a
valuable base for bootstrapping other software.
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I M P L E M E N T A T I O N 3
Overall, our goal for this thesis is to show that it is possible to create a full�source bootstrap that
starts with only source code and (ideally) a single human�auditable binary seed. For the purpose of
simplifying development, we split the bootstrap chain into two distinct parts:

• The outer bootstrap builds a Linux OS with a Nix installation from a bootable binary seed.

• The inner bootstrap, on the other hand, assumes an existing, working Nix installation running
under an existing Linux kernel and builds a NixOS toplevel derivation from a binary seed that
can be executed inside the Nix build sandbox.

Both parts can be developed independently. The outer bootstrap does not require anything that
the inner bootstrap provides. A copy of Nixpkgs is needed to validate that the bootstrapped Nix is
functional, but an unmodified Nixpkgs is sufficient. Even though the inner bootstrap requires the
result of the outer bootstrap as a prerequisite, it can be developed using another Nix installation
running under an existing Linux kernel, assuming that the bootstrapped Nix will behave the same as
the one on the development machine. Once both parts work individually, we can combine them to
create the actual full�source bootstrap.

3.1 The Outer Bootstrap

As a basis for the outer bootstrap, we used live-bootstrap, which we introduced in Section 2.3. It
provides us with a Linux OS as a starting point for bootstrapping Nix.

3.1.1 Setup

During development, we ran the bootstrap in a QEMU VM. Because we wanted to control the argu�
ments passed to QEMU, and the Python script included with live-bootstrap was not flexible enough
in that regard, we wrote a Makefile that creates disk images in bare-metal mode and starts a QEMU
VM using them. We used almost the same setup as the provided script: KVM acceleration enabled,
kernel-irqchip=split set as the machine type, and an e1000 network interface controller (NIC).
We diverged from the live�bootstrap setup by setting the CPU type to host, but this had no effect on
the files produced by the bootstrap; all hashes still matched after introducing the change. Further�
more, since we were using bare-metal images, we had to use a display for I/O rather than the serial
console. To be able to comfortably use QEMU over SSH without having to attach to the VM using
a remote desktop viewer, we used the -display curses option, which makes QEMU render the
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screen into the terminal, as long as the software running in the VM has not switched the display out
of text mode. That required a small change to the Linux kernel command line that the bootstrap uses
when switching from fiwix to Linux, to prevent the kernel from switching into graphical mode. At a
later point, we modified the generator script so that it does not start a VM in QEMU�Mode, allowing
us to choose between the two modes using the BOOTSTRAP_PLATFORM variable of our Makefile.

After the main bootstrap chain finishes, the Makefile can be used to start a development VM that is
a clone of the original bootstrap VM. It does this by leveraging the copy�on�write nature of the QCOW2
disk image format we are using. That allows us to return to the state directly after the bootstrap
without rerunning the entire bootstrap chain.

3.1.2 Extensions

Using our new Makefile�based tooling, we built what we are calling the extension system. An extension
is an optional continuation of live-bootstrap’s bootstrap chain. It consists of a list of steps that can be
executed after the original bootstrap chain finishes.

We tried to reuse as much of the existing tooling in live-bootstrap as possible. For this reason,
extensions use the same syntax for defining steps and the bootstrap chain as live-bootstrap. The file
layout of an extension follows that of the steps directory in the live-bootstrap repository: The order
of steps is defined in the manifest file, each package is contained in a subdirectory, and the hashes
of the build results are stored in the SHA256SUMS.pkgs file.

Using the same structure allows us to bundle one or more extensions into the bootstrap image,
creating a single bootstrap chain that executes the live-bootstrap steps and then the extension, without
requiring manual intervention. We realized this by extending the Python script that generates the
disk images with a new --extension command�line option.

A significant part of the bootstrap chain runs on kernels that do not support physical address
extensions and thus cannot use the entire system memory. In combination with an in�memory file
system, this tightly limits the available storage capacity. As a result, bundling an extension that is
too large leads to a crash. To mitigate that, the script packs the extension’s steps directory into
a compressed .tar.xz archive. The archive is included in the bootstrap disk image alongside a
generated improve script that unpacks the steps. When appending the extension’s manifest to the
existing one, a step that runs the generated unpack script is placed before the extension’s first step.
The SHA256SUMS.pkgs files are concatenated without any special processing.

To bundle multiple extensions, the option can be used multiple times. The extensions are then
executed in the order they were specified. When using the Makefile to run the bootstrap, the exten�
sions to be bundled can be set via the BOOTSTRAP_EXTS variable.

Aside from being integrated into the initial bootstrap chain, extensions can also be applied to an
existing live-bootstrap installation. For this purpose, the Makefile has a target that packs an extension
into a disk image. By setting the MOUNT_EXT make option when starting a development VM, the
specified extension can be packed into a disk image and attached to the VM, allowing us to test new
changes to extensions quickly.

The extension is installed by mounting the disk image and starting the run.sh script on it. The
script replaces the contents of the /steps directory, which remains on a finished live-bootstrap instal�
lation, with the extension’s steps, runs the script generator to generate new bootstrap scripts from
the extension’s manifest, and then executes the first stage of the generated scripts (/steps/1.sh)
using bash.
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3.1.3 The dev-setup Extension

The first thing we created using this system was the dev-setup extension. Its purpose is not to be
used as a part of the final bootstrap chain, but to verify that the extension system works as intended
and to support development and testing of the nix extension we created after it.

It builds busybox, a collection of UNIX command line utilities [19], to fill in those which are missing
on a regular live-bootstrap install (e.g., clear, less) and sets up busybox’s init system, allowing us to
start background services with the OS. busybox also includes a minimal variant of the vi text editor,
which we can use to edit the bootstrap files on the running system without having to reboot.

The service the init system is relevant for is the dropbear SSH server that the extension builds after
busybox. With dropbear installed and running, we no longer need to rely on the serial console to
interact with the VM and can instead connect to it directly over SSH.

To further improve the usability of the terminal interface, the extension configures the bash shell
with a prompt that displays the username, the hostname, and the current working directory, as
is common on other Linux distributions. Additionally, it installs scripts to simplify mounting and
building an extension (buildext), and to build a single package directly (build.sh).

3.1.4 The nix Extension

Using the tools installed by the dev-setup extension, we developed an extension to bootstrap Nix.
As a reference for writing the build scripts, we looked at how these packages are built in Arch Linux
[20] and Alpine Linux [21]. We choose these distributions because of the similarity of their package
managers’ build scripts to the live-bootstrap ones and because Alpine Linux, like live-bootstrap, uses
the musl C standard library.

When using the generator script to create the disk images, the file system does not fill the entire
available space in the image. To fix this, the nix extension resizes the partition and file system to fill
the entire available space before building any packages.

We decided to bootstrap version 2.28.4 of Nix because it is the version packaged in the Nixpkgs
snapshot we will use for the inner bootstrap in Section 3.2.

Nix is written in C++. The needed compiler, g++, is already provided by live-bootstrap. Current
versions of Nix—including the version we are using—are built using the Meson build system. Meson
is written in Python, which, too, is already provided by live-bootstrap.

While the interpreter is present, building Meson also requires the Python packaging utilities (the
packages build, installer, and wheel). The first build action of the extension is to bootstrap the
necessary Python packages and to build Meson.

To execute a build, Meson requires the Ninja build system, which it uses in the background, to be
installed. It is the package that the extension bootstraps next. Because CMake is required to build
some of Nix’s dependencies, the extension also bootstraps it.

Some libraries included with live-bootstrap are built for static linking only. To avoid rebuilding
those libraries, we opted to link Nix and its dependencies statically as well. Among the libraries Nix
depends on, there are a few that require special consideration:
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• bdw-gc, libgit2, nlohmann-json and Nix itself need to have -latomic added to the CFLAGS
environment variable to be built on 32�bit x86, because GCC does not automatically link
against libatomic, which is used to implement the __atomic functions on platforms that do
not support GCC’s built�in hardware�based implementation. [22]

• We had to compile libsodium, a library providing cryptography functionality, with the stack
protector disabled. While this is not optimal from a security standpoint, all packages we are
building will be replaced with versions built from Nixpkgs, so we did not consider this a
significant problem.

• Nix uses queue.h, a file that is present in glibc, but missing from musl. Alpine Linux provides
an implementation of queue.h for musl, which Nixpkgs also uses. We download that file from
the Alpine Linux repository and install it to the correct location so we can build Nix against
musl. [4, /pkgs/by-name/mu/musl/package.nix]

• The version of libarchive included in live-bootstrap lacks bzip2 support. Compiling against
it results in a Nix that cannot unpack .tar.bz2 archives. To overcome this, we needed to
rebuild libarchive. Because the bzip2 built by live-bootstrap lacks the pkg-config file needed
for the libarchive build to detect it, we had to rebuild bzip2 as well.

After building Nix, the extension’s final step is to set it up. For this, we wrote an improve script
that generates the /etc/nix/nix.conf configuration file, creates the /nix directory, and sets up the
nixbld group and users, which Nix needs for its build sandbox.

Figure 1 shows the dependencies of the packages in the nix extension. For readability, we did not
draw edges for dependencies that are already fulfilled transitively.
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Figure 1: Dependency Graph of the nix extension
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3.2 The Inner Bootstrap
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Figure 2: Overview of the packages built in each stage of the inner bootstrap
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3.2 Implementation – The Inner Bootstrap

NixOS is a part of Nixpkgs. As such, building a full�source bootstrap chain for NixOS is equivalent to
building one for Nixpkgs.

The approach we chose for the inner bootstrap was to focus on the bootstrapTools package from
which every other package in Nixpkgs is bootstrapped. We used Aux Foundation as a starting package
set to build a replacement for bootstrapTools.

Following the structure of Aux Foundation, we split the bootstrap chain into stages. Our final
bootstrapTools bootstrap consists of nine stages. Each stage is a function that uses the derivations
produced by the previous stages to produce a new attrset with derivations.

3.2.1 Stages 1 and 2: Aux Foundation

The first two stages re�export the Aux Foundation packages from the stages with the same names. It is
worth noting that Aux Foundation has three stages, starting with stage 0, where it builds a first, simple
C compiler. However, we did not use the packages from stage 0 directly. Therefore, our bootstrap
chain starts with stage 1. The bulk of the packages we used are built in stage 2, including the gcc
toolchain and the glibc C standard library. The musl C library against which the toolchain links is
built in stage 1.

3.2.2 Stage 3: First Minimal stdenv

In stage 3, we build a first version of stdenv. In addition to a C toolchain, Nixpkgs’ stdenv contains
the following packages: [4, /pkgs/stdenv/generic/common-path.nix]

• bash
• bzip2
• coreutils
• diffutils
• file
• findutils
• gawk
• gnugrep
• gnumake
• gnused
• gnutar
• gzip
• gnupatch
• xz

As shown in Figure 2, Aux Foundation provides all of these packages, except for file, which we
thusly omit in this stage.

To be usable in stdenv, the C compiler must be wrapped by a script that injects the command�
line flags needed to produce working executables within the Nix build environment. Building this
wrapper itself requires stdenv. Nixpkgs solves this by additionally building stdenvNoCC, a variant of
stdenv that is built without a C compiler. We replicated this solution for our bootstrap.

Wrapping a compiler that links against musl additionally requires the fortify-headers package.
To build it, we called its existing function in Nixpkgs with our package set.
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The patch command built by Aux Foundation is broken when used as stdenv tries to invoke it, so
we added an override to build the first version of fortify-headers without applying the patches.
Downloading the sources requires fetchurl, which depends on curl. The bootstrapTools package
does not include curl, meaning that Nixpkgs needs to solve this problem, too. To do so, Nixpkgs
includes a bootstrap version of fetchurl that uses the <nix/fetchurl.nix> fetcher instead. We
used this to provide the required fetchurl.

Notwithstanding Nixpkgs supporting building bootstrapTools using binaries linked against musl,
we decided to use glibc�linked binaries like the prebuilt version that an unmodified Nixpkgs would
use. The rationale was to replicate the original bootstrapTools as closely as possible to avoid
causing problems when integrating the bootstrap chain into Nixpkgs. Since the gcc package provided
by Aux Foundation is configured to link against musl, we cannot use this first stdenv to build the
bootstrapTools replacement, and need to build a compiler that links against glibc first.

3.2.3 Stage 4: Complete stdenv

With the basic stdenv from the previous stage, we (re�)built file, gnupatch, and xz to complete the
stdenv packages. While file is built for the first time in this stage, both gnupatch and xz are already
contained in Aux Foundation. The packages work in isolation, but when used with mkDerivation,
they are not able to apply patches and unpack .tar.xz archives respectively. We used the Nixpkgs
package definitions for the rebuild to ensure the options required to make the programs work with
stdenv are set correctly. Building gnupatch, however, again required an override to prevent it from
attempting to apply patches, since the previous version is non�functional. To save on build time, we
did not immediately rebuild gnupatch with the patches applied. The unpatched version is sufficient
for building everything until it is rebuilt for inclusion in bootstrapTools.

3.2.4 Stage 5: Cross-Compiler

Using the now complete set of inputs, we built a new stdenv. With this, we rebuilt fortify-headers
—this time without the override that removed the patches.

Until this point, every stdenv we built had i686-unknown-linux-musl set as its build, host, and
target platforms. That means they used and produced binaries that can be executed on any i686�
compatible (32�bit x86�based) CPU running Linux, and that the binaries are linked against musl.

The central operation of this stage is building a cross�compiler that is itself linked against musl,
but outputs binaries linked against glibc. To achieve this, we rebuilt binutils and gcc, and their
respective wrappers, with i686-unknown-linux-gnu set as the target platform. From these packages,
we built a new stdenv variant that we called crossStdenv. This new stdenv has i686-unknown-
linux-musl set as its build platform, and i686-unknown-linux-gnu as the host and target platforms.
The glibc package we use in this stage is taken from Aux Foundation’s stage2.

3.2.5 Stage 6: Native Compiler

In the next stage, we used the crossStdenv to rebuild binutils and gcc again, this time for i686-
unknown-linux-gnu, which they also target. For the build, we used the same platform definitions
as crossStdenv. We created another stdenv that uses the native compiler, with i686-unknown-
linux-gnu as its build, host, and target platforms.
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3.2.6 Stage 7: fetchurl

To recreate the Nixpkgs�built bootstrapTools as closely as possible, we used the package definitions
from Nixpkgs for all included packages. Because these were built with the expectation of having
the entirety of Nixpkgs available, they use fetchers like fetchpatch, which depend on features of
fetchurl that are not available in the bootstrap version. That is why, in this stage, we bootstrapped
the regular curl�based fetchurl.

3.2.7 Stage 8: Final Compiler

As stated before, we wanted to build all packages contained in bootstrapTools from their Nixpkgs
definitions. For this reason, we rebuilt glibc, gcc, and binutils, including their dependencies from
their Nixpkgs definitions for the last time, and used the result to create our final stdenv.

3.2.8 Stage 9: bootstrapTools

Every package contained in bootstrapTools is either built for the first time or rebuilt in stage8 or
stage9. Doing this was necessary so that all packages in bootstrapTools are linked against the exact
glibc included with them that we built in stage7. We obtained the bootstrapTools derivation by
calling the function in make-bootstrap-tools.nix16, and passing in our package set.

3.2.9 Integration

The bootstrap-files17 directory in Nixpkgs contains a .nix file for every supported platform.
Each file contains an attrset with two entries: bootstrapTools and busybox. These entries contain
the results of two <nix/fetchurl.nix> calls that download the prebuilt bootstrapTools and a
statically linked busybox binary, which is used as the initial builder. The files downloaded here are
the ones make-bootstrap-tools.nix returns in the bootstrapFiles attribute. Because the attrset
contained in that attribute has the same form as the ones defined in the bootstrap-files directory,
we replaced the contents of i686-unknown-linux-gnu.nix with code that imports our bootstrap
chain and returns the value of bootstrapTools.bootstrapFiles from it. For all other platforms, we
modified the files to throw an error when evaluated, to prevent accidental use of non�bootstrapped
packages.

Since January 2024, support for the i686-linux platform by Nixpkgs and thus NixOS has been
discontinued. [23] Consequently, NixOS is no longer guaranteed to be buildable on this platform.
Because we encountered build failures when building a NixOS toplevel derivation, we decided to
build NixOS for the x86_64-linux platform instead. Thanks to 64�bit x86 CPUs generally being able
to execute 32�bit x86 binaries, we can use our existing i686-linux bootstrap chain to cross�compile
bootstrapTools for x86_64-linux: Based on the code in make-bootstrap-tools-cross.nix18, we
modified x86_64-unknown-linux-gnu.nix in the bootstrap-files directory to build the x86_64-
linux version of bootstrapTools from the bootstrapped i686-linux Nixpkgs, making use of its
cross�compilation support.

16[4, /pkgs/stdenv/linux/make-bootstrap-tools.nix]
17[4, /pkgs/stdenv/linux/bootstrap-files/]
18[4, /pkgs/stdenv/linux/make-bootstrap-tools-cross.nix]
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3.3 The Combined Bootstrap

By linking the bootstrap chains together, we constructed a combined bootstrap chain that starts with
live-bootstrap and results in a NixOS installation. We implemented this through another extension
using the system we introduced in Section 3.1.2.

First, the nixos extension reconfigures the tmpfs mounted at /tmp to a size of 32 GiB and four
million inodes. To support this without impacting the available system memory, it also generates
and activates a swap file of the same size. Growing the tmpfs is necessary, as Nix stores the working
directory of the build processes in there. The original size and inode count set by live-bootstrap caused
space�intensive builds to run out of capacity. Unmounting the tmpfs entirely or instructing Nix to use
another directory were solutions we considered as well. Both caused build failures in Aux Foundation
—hence, we did not pursue them any further.

Before Nix is used to build any packages, we added a step that starts the Nix daemon and configures
all subsequent Nix invocations to access the Nix store through the daemon rather than directly. Hav�
ing this single point through which all interactions with the Nix store are managed prevented a race
condition between multiple builds finishing at the same time, which had caused bootstrap failures
before we introduced the daemon. The race condition might have been mitigated by deactivating the
auto-optimise-store option in /etc/nix/nix.conf. If the option is enabled, Nix deduplicates all
files in the Nix store using hard links. The build failure occurred when a Nix instance attempted to
create a hard link that another build process had already created in the time since it checked for its
presence. To save on disk space, we kept the feature enabled.

As a result of live-bootstrap targeting 32�bit x86, the kernel it builds can not execute 64�bit binaries,
even when running on a 64�bit CPU. To overcome this limitation, we used Nix to cross�compile a
64�bit Linux kernel. Nixpkgs’ default configuration is not suitable for use without an initial RAM file
system (initramfs) containing the kernel modules needed to interface with the disk containing the
root file system. We used the kernel configuration from live-bootstrap, ensuring that the new kernel
is bootable on all (64�bit capable) computers that can run live-bootstrap. A jump script switches to
the new kernel and resumes the bootstrap chain there.

During development of the kernel bootstrap, we found that the bash package from Aux
Foundations’s stage1 is not buildable under a 32�bit kernel. The cause is one of the checks in the
package’s ./configures script crashing in this scenario. Before integrating the bootstrap chains, the
problem did not occur because we developed the inner bootstrap on a NixOS installation with a 64�
bit kernel. Our solution was to skip the misbehaving check and always assume that the functionality
it was trying to detect is unavailable.19

Attempting to build 64�bit packages with the 32�bit Nix we built in Section 3.1.4 fails with a Bad
system call error. We added a step that uses the 32�bit Nix to cross�compile a 64�bit version, as
we did with the kernel. Afterward, the Nix daemon is restarted so that it, too, uses the 64�bit version
of Nix.

In its penultimate step, the extension builds a NixOS toplevel derivation for the x86_64-linux
platform. The configuration used to build it can not be adjusted for the specific machine the
bootstrap is running on due to live-bootstrap’s reproducibility checks. Instead, we added a script to
the configuration that runs NixOS’s boot process. The script uses the nixos-generate-config20

utility to automatically detect the needed options for the hardware, generating the hardware-

19Pull request with the fix we opened upstream: https://git.auxolotl.org/auxolotl/foundation/pulls/3
20[4, /nixos/modules/installer/tools/nixos-generate-config.pl]
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3.3 Implementation – The Combined Bootstrap

configuration.nix file. This file is imported by the NixOS configuration, which the script rebuilds
before rebooting. When executing the rebuild, the script removes itself from the configuration, so
that it runs only once. In this step, we also create the /etc/NIXOS_LUSTRATE file, which tells NixOS
to perform a cleanup of the system. Before the configuration is activated, everything that does not
belong to the configuration or is listed in that file is moved to /old-root. [10, #sec-installing-
from-other-distro]

Finally, the extension jumps into NixOS. We used the 64�bit kernel built with live-bootstrap’s config
earlier instead of the one built with the NixOS toplevel derivation for this, because hardware
detection only happens after the first boot, and therefore required modules may still be missing from
the initramfs, rendering the NixOS kernel unbootable. We did, however, use the initramfs included
in the toplevel derivation. Doing so ensures that nixos-generate-config can properly detect the
boot device.

The bootstrap chain ends when the hardware�detection script included in the initial configuration
reboots the system. If running inside QEMU using the command from our Makefile, the VM exits at
this point instead of completing the reboot.

3.4 Taking the Bootstrap Offline

Checksums ensure the integrity of the files downloaded from the internet during the bootstrap. They
are used for this purpose throughout the bootstrap chain. Nonetheless, we wanted the bootstrap to be
executable without an internet connection to eliminate the possibility that any component downloads
unverified data, thereby contaminating the bootstrapped system.

Through the use of the --external-sources option when generating the bootstrap files, live-
bootstrap can already be used fully offline. The only problem we encountered was that it still requires
a NIC to be connected to the bootstrap machine. Without that, the bootstrap fails when it tries to
acquire an IP address via DHCP. We made the problematic step skippable by introducing a new --
offline option. Furthermore, the nix extension can also be used offline without modification. It
exclusively uses the sources files to obtain the packages’ source code. Accordingly, they are handled
by the --external-sources option, too.

Building the nixos extension offline, on the other hand, required a more sophisticated approach.
The Nix packages utilize the fetchers to download their source files. Manually finding the URLs and
hashes of all source files would not be feasible within a reasonable timeframe, due to the number
of packages and their associated source files involved in building the toplevel derivation. Besides
that, we needed to instruct Nix to use the local source files rather than attempting the download.
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3.4.1 fetchurl

The nix derivation show command prints a JSON representation of a given store derivation. The
output produced for the store derivation corresponding to the example derivation shown in Listing 3
in Section 2.1.2 is shown in Listing 5.

1 { JSON
2   "/nix/store/3ab...9m4-example.drv": {
3     "args": [ "-c", "echo hello world > $out" ],
4     "builder": "/nix/store/aqb...qsy-bash-interactive-5.2p37/bin/bash",
5     "env": {
6       "builder": "/nix/store/aqb...qsy-bash-interactive-5.2p37/bin/bash",
7       "name": "example",
8       "out": "/nix/store/n1x...s2k-example",
9       "system": "x86_64-linux"
10     },
11     "inputDrvs": {
12       "/nix/store/5hh...p56-bash-interactive-5.2p37.drv": {
13         "dynamicOutputs": {},
14         "outputs": [ "out" ]
15       }
16     },
17     "inputSrcs": [],
18     "name": "example",
19     "outputs": {
20       "out": {
21         "path": "/nix/store/n1x...s2k-example"
22       }
23     },
24     "system": "x86_64-linux"
25   }
26 }

Store paths have been shortened for readability.

Listing 5: JSON representation of an example store derivation

With the --recursive option, the generated JavaScript Object Notation (JSON) contains not only
the contents of the store derivation passed to the command, but also of the store derivations of all
store paths referenced by it, directly or indirectly. The result encompasses everything needed to build
the input derivation from scratch.

FODs are trivial to detect in this representation, because their outputs.out attribute additionally
contains the keys hash, hashAlgo, and method. The value of method determines how the hash is
to be calculated: flat specifies that the derivation’s output is a single file that should be hashed
directly, whereas nar and recursive instruct Nix to calculate the hash from a NAR dump of the
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output.²¹ [8, ch. 5.4.1.1] Entries created by a call to fetchurl also contain the URL they download
in the .env.url attribute, or in the env.urls attribute if multiple mirrors are specified.

Initially, we focused only on files that live-bootstrap’s tooling can download. Every line in a sources
file contains the URL, the SHA�256 hash, and a filename. To generate such a file, we wrote a script
that parses the output of nix derivation show --recursive for all packages built in the nixos
extension. It filters out everything that is not a FOD with a known URL, a sha256 hash, the flat
hashing method, and an unset or empty .env.postFetch value. The postFetch environment vari�
able is used by fetchers that perform the actual download with fetchurl, but need to post�process
the downloaded file. Nix checks the hash after the post�processing step, hence there is no way to infer
the checksum of the original file.

To make Nix use the downloaded files, we added a new step to the nixos extension between
starting the Nix daemon and building the first package, that copies the files into the Nix store with
nix-store --add-fixed. This command results in the same store path as building a FOD with the
file as its output would. [8, ch. 8.3.3.1] Nix thus detects that the store path is already present and
skips the download. That is another reason why we had to filter out derivations with a non�empty
postFetch value: Even if we were able to obtain the correct hash and download the files, in order
to create a FOD with the correct store path, we would have had to replicate the post�processing step
before adding the file to the Nix store.

3.4.2 Other Fixed Output Derivations

For all FODs we were unable to replace with this method, we used Nix’s binary cache feature. We
modified the script to copy all incompatible FODs into a local binary cache, which is packed into an
archive and placed next to the downloaded source files. During the bootstrap, the archive is unpacked
and the contained FODs are copied to the Nix store of the bootstrap machine.

The caveat with this solution is that post�processing no longer occurs on the bootstrap machine,
but on the computer preparing the bootstrap, using non�trustworthy software. Given that FOD build
results are checked against predefined hashes, we were willing to accept this tradeoff.

3.4.3 Built-in Fetchers

After implementing the binary cache, the last source files that were not available offline were those
downloaded by the built�in fetchers. Since the built�in fetchers do not produce store derivations, there
is nothing for nix derivation show to convert to JSON. Even though the downloaded store paths
do appear in the attributes of the derivations that use them, paths obtained from a built�in fetcher do
not have their own entries.

In Nixpkgs, built�in fetchers may not be used. [10, #chap-pkgs-fetchers] Aux Foundation does,
however, use them in two places: First, to download a repository with library functions, and secondly,
to download and unpack the sources for the stage0 packages.

²¹There are further, experimental hashing methods. Those are however not relevant in the context of this thesis, as
we did not enable the relevant experimental features.
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We addressed the first instance by copying the contents of the library repository into the Aux Foun-
dation source tree. That allowed us to remove the download entirely.

For the second instance, removing the calls to builtins.fetchTarball was not trivially²² possi�
ble. Because these downloads occur before any Nix packages are built, the fetchTarball function is
essential for unpacking the downloaded archives. Instead of removing the fetcher calls, we modified
them so that the uniform resource locators (URLs) can be overwritten with files:// URLs pointing
to local copies of the files. This way, fetchTarball still unpacks the archives, but no longer requires
an internet connection.

²²There is an open pull request on the Aux Foundation repository [14, #15] that aims to replace the fetchTarball
calls with a combination of the code behind <nix/fetchurl.nix> and the undocumented builtin:unpack-channel
builder to solve this exact problem.
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R E S U L T S 4
Previously, we described how we implemented the full�source bootstrap for NixOS. In this chapter,
we present the final results we achieved using our implementation.

4.1 RQ1: Is it possible to construct a full-source bootstrap chain
for the Nix package manager?

Using the approach detailed in Section 3.1, we were able to bootstrap a Linux OS with a fully
operational Nix installation. In terms of files, the only prerequisites are the source code and a human�
auditable binary seed; thus, we consider this a successful implementation of a full�source bootstrap
chain for the Nix package manager.

4.2 RQ2: Is it possible to construct a full-source bootstrap chain
for Nixpkgs by replacing the bootstrapTools package?

In Section 3.2, we showed that a replacement for the bootstrapTools package can be bootstrapped
entirely using Nix packages. Because the packages are built from only source code and a human�
auditable binary seed, we consider this, too, a full�source bootstrap chain.

4.3 RQ3: How can these two bootstrap chains be combined to
create a full-source bootstrap for NixOS?

Using the solution we detailed in Section 3.3, NixOS can be bootstrapped from source. We extended
the Nix bootstrap chain developed to answer RQ1 to bootstrap a 64�bit Linux environment, switch to
it, and then build and install a NixOS toplevel derivation from the modified Nixpkgs we developed
to answer RQ2.

Because of availability issues with the source files, running the bootstrap only completed with
manual intervention before we made it capable of running offline to answer RQ4. We successfully
executed the entire bootstrap in a VM and on a physical computer. The VM was assigned 16 GiB
of RAM and 12 logical CPU cores. It was executed using QEMU 9.2.4 on a host machine running
Fedora 42, which was equipped with an AMD Ryzen 7 5800X processor and 32 GiB of RAM.
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4 Results

The exact QEMU command can be obtained from the Makefile located in the root directory of our
fork of the live-bootstrap repository. The physical computer was a Lenovo ThinkPad T440p equipped
with an Intel Core i7-4702MQ processor and 16 GiB of RAM.

In the VM, our three successful offline bootstrap runs took 17h 3min, 17h 21min, and 17h 43min,
as measured by the time command. We did not measure the bootstrap duration on the physical
computer.

4.4 RQ4: Can the bootstrap chain be executed fully offline?

With the adjustments we described in Section 3.4, we were able to run the bootstrap in a VM without
any NIC attached. Consequently, this VM was not connected to the internet. These changes made
the bootstrap independent of the availability of the servers hosting the source files, once they have
been downloaded to the computer preparing the bootstrap.

After implementing the changes, the bootstrap in the VM passed without requiring any interaction.
On the physical computer, the last step of the bootstrap chain failed without an internet connec�
tion because nixos-generate-config enabled options that required building additional packages.
Furthermore, we had to remove the kernel arguments we added to be able to use QEMU’s curses
display mode from the configuration. With these set, the video output did not work after the bootstrap
completed.

4.5 RQ5: Is it possible to create a NixOS ISO image that can be
used to install the bootstrapped NixOS on other computers with-
out having to run the full bootstrap on them first?

We successfully built a NixOS installer ISO image from our modified version of Nixpkgs by following
the instructions in the NixOS manual [12, #sec-building-image] on a NixOS installation that
resulted from running the full�source bootstrap.

Using this image, we were able to install NixOS on another VM without running the entire
bootstrap chain. Since the installer ISO only contains the run�time dependencies of the packages it
includes, using it to install NixOS still involves building through the inner part of the bootstrap chain.
Because of the source availability issues we encountered, the installation only succeeded after we
loaded the source files we downloaded for running the bootstrap offline into the Nix store of the
installation system.

4.6 RQ6: How can the bootstrap be adapted to architectures
beyond x86-based systems?

Neither live-bootstrap nor Aux Foundation support architectures other than 32�bit x86 at the time
of writing. That means that it is not possible to execute the bootstrap chain on other architectures
directly. With the Nix DSL code shown in Listing 6, we were able to cross�compile a NixOS installer
ISO image for the aarch64-linux platform that we confirmed to be bootable on a Raspberry Pi 4
with UEFI firmware [24] installed. Nonetheless, because we did not implement a bootstrapTools
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Results 4

bootstrap for that platform, it was not possible to build packages on the booted installation system.
Cross�compiling bootstrapTools from i686-linux like we did for x86_64-linux would be a solu�
tion, but would require a secondary x86�based computer set up as a remote builder, [8, ch. 7.2] to
run the i686-linux parts of the bootstrap chain on. Our ability to cross�compile the installer ISO for
aarch64-linux, however, demonstrates that it would be possible to use an x86�based computer to
cross�compile the entire system configuration for other platforms.

cross-iso.nix Nix
1 (import <nixpkgs/nixos> {
2   configuration = builtins.toFile "configuration.nix" ''
3     { ... }:
4     {

5       imports = [ <nixpkgs/nixos/modules/installer/cd-dvd/installation-cd-
minimal.nix> ];

6
7       nixpkgs.buildPlatform = "x86_64-linux";
8       nixpkgs.hostPlatform = "aarch64-linux";
9     }
10   '';
11 }).config.system.build.isoImage

Listing 6: Nix DSL expression for cross compiling an aarch64-linux installer ISO on x86_64-linux

4.7 RQ7: Does the bootstrap chain still include any binaries be-
sides the initial bootstrap seeds?

Without employing any complex methods, we can confirm this by providing an example: the
basic NixOS configuration we used to build the toplevel derivation for the NixOS bootstrap
depends on rustc, the compiler for the Rust programming language. That compiler is bootstrapped
from precompiled binaries provided by the Rust project. [4, pkgs/development/compilers/rust/
bootstrap.nix]
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D I S C U S S I O N 5
Having demonstrated that and how a full�source bootstrap for NixOS can be implemented, we
will now delve into the broader implications for the security and usability of the bootstrapped OS.
Moreover, we will discuss the challenges we faced during implementation regarding the availability
of the source code.

5.1 Usability

Being built from the same sources, the bootstrapped NixOS installation behaves just like a non�boot�
strapped one from the end�user perspective. The differences lie in the initial installation procedure
and in the process of installing additional packages.

5.1.1 Initial Installation

Our introduction of the full�source bootstrap significantly increases the computational cost of
installing NixOS—especially when running the entire bootstrap chain starting with live-bootstrap.
Moreover, the bootstrap, at least in its current form, limits hardware compatibility to just x86_64-
linux: The bootstrap chains we built upon only run on x86 CPUs, and NixOS only supports
64�bit x86. Additionally, live-bootstrap limits us to computers that can boot from a master boot
record (MBR), excluding machines that only support the newer UEFI standard.

The requirement for MBR compatibility, as well as parts of the computational cost, can be worked
around by using the NixOS installer image. As we showed, the installer image can be built from
our modified Nixpkgs on a bootstrapped NixOS installation. Including the build�time dependencies
needed for a basic NixOS system might be a viable approach to reduce the installation’s resource
requirements further.

Using an installation medium merely shifts the problem, though: Obtaining said installation media
without breaking the trustworthiness of the binaries established through the bootstrap still requires
building it oneself. Still, this may present an improvement over having to run the entire bootstrap
chain for every installation when setting up multiple computers, or when a trusted party provides
the once�built image to multiple others. We will discuss another possible solution to this issue in
Section 5.4.
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5.1.2 Adding Packages

As long as the build�time dependencies compiled during the initial installation remain in the Nix
store, installing additional packages has a similar computational cost to using another source�based
package manager. When the garbage collector is triggered for the first time, however, the build�time
dependencies are deleted. Afterward, installing new packages additionally involved rebuilding their
build�time dependencies. In a test we performed²³, this included the entire inner bootstrap chain.

A way to improve this might be to explicitly include all, or a central subset of the build�time depen�
dencies in the system configuration, to prevent them from being deleted during garbage collection.
That might not be desirable in all scenarios, though, as it limits the amount of disk space the garbage
collector can free: On a fresh install, garbage collection freed more than 19 GiB, which would keep
being used if deleting the build�time dependencies was prevented.

5.1.3 Updating

The issue of updating is twofold: the modified version of Nixpkgs must be updated with package
definitions from upstream Nixpkgs, and the bootstrapped NixOS installations must be updated with
the updated Nixpkgs.

Since we implemented the inner bootstrap in a fork of the Nixpkgs repository, updating the Nixpkgs
version it bootstraps requires manually rebasing our changes onto a newer Nixpkgs commit using Git.
Being a manual process, as well as the potential for conflicting changes in the upstream repository
that we would have to reconcile manually, render this setup unsuitable as a long�term solution.

Ideally, the inner bootstrap will be merged into the upstream Nixpkgs repository, eliminating the
need for a modified fork. That would allow users to weigh usability against the trustworthiness of
binaries by choosing whether to use the binary cache, use the prebuilt installation media, or build
everything themselves.

Another option worth investigating is converting the bootstrap into a Nixpkgs overlay. Overlays
are Nix language functions that override parts of the package set. As an overlay, the bootstrap would
no longer be bound to any specific Nixpkgs version.

Updating the bootstrapped NixOS installations incurs the same computational cost as installing
new packages. Additionally, any dependents of the updated packages must be rebuilt, too. Updates
to stdenv or any of its dependencies consequently require a rebuild of all packages installed on the
system.

5.2 Source Availability

A persistent problem we faced during implementation was the availability of the source code of the
packages we needed to build. J. Malka et al. [25] found that 99.94% of the packages in a Nixpkgs
snapshot from 2017 could still be built when they conducted their experiment six years later. From
our experience, it is evident that they achieved this result only because they used the Nix project’s
binary cache—an outcome they anticipated in their paper.

²³Building stdenv after running nix-collect-garbage -d on a bootstrapped NixOS installation using a default
configuration generated with nixos-generate-config
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For our bootstrap, we deactivated the binary cache to rule out downloading any precompiled binaries
from it. Due to the aforementioned availability issues, we were only able to run the online version of
the bootstrap with manual intervention, prompting us to focus our work on the offline version.

The two classes of build failures we experienced with FODs were files not being available at their
URLs, either temporarily or permanently, and the hash of the source files available at their original
URLs changing. The latter occurred with files generated on demand by Git repository hosting soft�
ware. Presumably, the hashes changed due to changes to said hosting software. For a subset of those
FODs, we addressed the changed hashes by cherry�picking the commits that updated the hashes from
the upstream Nixpkgs repository into our own fork. We obtained the remaining unavailable files by
selectively pulling the FODs from the binary cache.

While the binary cache solves the source availability problem in the context of Nix, it highlights the
value of projects like Software Heritage [26], which archive source code repositories to keep them
available even when the originals disappear from the internet.

5.3 Remaining Sources of Untrustworthiness

The full�source bootstrap we implemented effectively mitigates the attack via malicious compiler, as
described by Thompson, with one notable exception: Compilers that are not bootstrapped from the
C�compiler contained in bootstrapTools, but from a different, precompiled binary seed. Eliminating
these other binary seeds from Nixpkgs remains an obstacle on the path towards establishing the
ultimate trust that all packages produced by Nixpkgs’ build definitions accurately reflect the source
code they were built from.

5.3.1 External Factors

Despite the bootstrap chain’s binary seed being small enough to be human�auditable, the bootstrap
cannot be considered fully independent of any intransparent binaries: it still requires an existing OS
to prepare the bootstrap files, as well as the firmware powering the hardware on which the bootstrap
runs.

While it is conceivable for the OS used for preparation to be malicious and to tamper with the
files as the bootstrap media is prepared, malicious code being present in the computer’s firmware
is the more realistic scenario. This attack vector does not require tampering with the files or the
bootstrapped operating system itself, and cannot be prevented on the software side.

5.3.2 Malicious Source Code

Even when we trust the compiler to translate source code to machine code faithfully, we can not
automatically trust the compiled binaries to be free of trojan horses: The attack on xz-utils [27],
a data compression program and library, has made it abundantly clear, that being a widely used24

FOSS project does not mean that a program does not include malicious code.

In this incident, an attacker managed to introduce a trojan horse targeting the OpenSSH [28]
server. It allowed bypassing the SSH server’s authentication check, granting the attacker full remote
access to compromised systems. The malicious code was obfuscated well enough that it was not

24Some examples: Part of Nixpkgs’ stdenv; Compression method used for NARs in Nix binary caches; Used by some
projects to compress their source tarballs; Previously used to compress Arch Linux packages
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found upon its introduction into the publicly available xz-utils source code repository. It was only
discovered when a developer detected anomalous behavior of the SSH server on an affected machine.
[29]

5.4 Reproducible Builds

Reproducible builds offer promising solutions to the computational cost problem we discussed in
Section 5.1. A build is considered reproducible if, and only if, executing it with the same inputs
produces a bit�by�bit identical result every time. That allows using prebuilt binaries without having
to trust any single distributor:25 if a quorum of independent builders produce the same output for a
given build job, we can be reasonably sure that the build result has not been tampered with. [30]

J. Malka et al. [31] found that in the Nixpkgs revisions they investigated, between 69% and 91%
of packages could be built reproducibly. The minimal installer image includes a higher share of
reproducible packages: over 95% for all examined revisions since May 2019. In 2023, a version of
the minimal installer image was successfully reproduced. [32], [33]

With a fully reproducible installer image, running the outer bootstrap can be skipped in favor of
installing via the image, without sacrificing any of the trustworthiness improvements provided by
the full�source bootstrap. The same is true for any other reproducible package individually. Even at
the worst case observed by J. Malka et al. of 69% of packages being buildable reproducibly, a binary
cache containing only independently verified binaries of these packages could significantly speed
up the installation of the OS, and of individual packages. If most packages were available from an
independently verified source, users might be motivated to compile the missing packages locally. An
implementation of such a binary cache that verifies the packages it serves by comparing the build
results of multiple builders is Trustix. [34], [35]

5.4.1 Content-Addressed Derivations

Nix can operate under two different models: The extensional model [5, pp. 87–134], which current
versions of Nix use by default, and the intensional model [5, pp. 135–163], the implementation of
which is still considered experimental.

In Section 2.1.1, we explained that the hash portion of a derivation’s store path is calculated from
its inputs. The derivations for which this is the case are called input-addressed derivations. [8, ch.
4.4.1] We also introduced an exception from this rule in the form of fixed-output derivations (FODs).
Both input-addressed and fixed-output derivations are part of the extensional model.

Under the intensional model, input�addressed derivations are replaced by content�addressed
derivations (ca�derivations). As the name suggests, ca�derivations do not calculate their hash from
their inputs, but from the contents of the resulting store path. They share this property with FODs,
which can be considered a special case of ca�derivations. Unlike for FODs, the store path of a ca�
derivation is not known at evaluation time. Hence, the advantage of FODs—that the build only has
to be executed once if multiple derivations yield the same result26—does not apply to ca�derivations.

Using ca�derivations allows implementing an early-cutoff for the build process: When a dependency
of a package needs to be rebuilt, this ordinarily means that its output path changes, which in turn

25Or in the nix context, the operators of a binary cache.
26e.g. if multiple fetchurl calls with different URLs but the same hash exist, or if the file has already been added to

the store with nix-store --add-fixed.
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changes the inputs of the dependent package, prompting it to be rebuilt as well. If the dependency
is a ca�derivation and its rebuild produces a bit�by�bit identical result, it will produce the same store
path, thus leaving the dependent package’s inputs unchanged and allowing its rebuild to be skipped.
[36], [37]

The early-cutoff can help avoid unnecessary rebuilds of large parts of the package set during
updates: Suppose an update to a build tool fixes a rare edge case. With input�addressed derivations,
this change requires rebuilding every package that depends on the tool directly or indirectly. When
using ca�derivations, on the other hand, only the tool’s direct dependents are rebuilt.27

27As long as none of them trigger the hypothetical, fixed edge case, leading to a change in the build result.
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R E L A T E D  W O R K 6
6.1 GNU Guix

GNU Guix [38] is another implementation of the “purely functional software deployment model”
devised by Dolstra [5] as the theoretical foundation of Nix. It is itself based on Nix, but replaces the
Nix Language with Guile Scheme, a Lisp dialect, as the language package definitions are written in.
Like the Nix project, GNU Guix includes a repository with build definitions. [38, /gnu] The Guix
System is a Linux distribution built from those packages and fills the role of NixOS in the Guix
ecosystem. In 2023, members of the project announced that they successfully reduced the bootstrap
seed of the GNU Guix package set to a 357�byte binary. For this, they coined the term “full�source
bootstrap”. They claim to be the first distribution to achieve this. [3]

6.2 Nixpkgs’ minimal-bootstrap

When the full�source bootstrap for GNU Guix was published, efforts were made to implement a similar
bootstrap chain for Nixpkgs. That resulted in the minimal-bootstrap package set. [4, /pkgs/os-
specific/linux/minimal-bootstrap]

Neither the minimal-bootstrap package set, nor the open pull request (PR) that would extend
it with additional packages [4, #260193] have been updated since 2023. In the Nixpkgs snapshot
we used for our bootstrap, the minimal-bootstrap packages no longer built successfully. Aux Foun-
dation, which we used instead, is based on the work on the minimal-bootstrap package set. It
already incorporates the packages the PR would add. More importantly, it is currently under active
development, and we were able to build the contained packages without modifications.

6.3 Other Operating Systems

Outside the realm of functional package managers, there are other operating systems that can be
built using another existing OS’s tooling. Likely, a full�source bootstrap for any OS buildable on a
different Linux distribution can be achieved using live-bootstrap.

28Gentoo can be installed in a subdirectory on another Linux distribution. [41] It might be possible to build instal�
lation media in this environment.
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6.3 Related Work – Other Operating Systems

Examples include FreeBSD [39, ch. 26.9], NetBSD [40, ch. 33] and Gentoo28, as well as Linux
distributions that are designed to be always built on an existing Linux host system, like Linux From
Scratch [42] and the embedded distributions Yocto [43] and buildroot [44].

6.4 Reproducible Builds

As we have shown in Section 5.4, bootstrapping and reproducibility are closely linked. The Repro-
ducible Builds project [45] advocates for developers and distributors to take reproducibility into
account when writing and packaging software. Under the project’s umbrella, tools for making builds
reproducible and for investigating non�deterministic behavior are developed.
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C O N C L U S I O N 7
In this thesis, we showed how the NixOS Linux distribution can be bootstrapped (almost) entirely
from source code, eliminating the risk of the “trusting�trust” attack outlined by Thompson. [2] We
implemented a bootstrap chain for the Nix package manager based on live-bootstrap and one for the
Nixpkgs package set based on Aux Foundation. From these two bootstrap chains, we constructed a
single, continuous bootstrap chain for NixOS.

To run the bootstrap offline, we added functionality to download the required source files once,
before the bootstrap is executed. Because we consistently experienced problems with the availability
of source files, this was a required step to complete the bootstrap without manual intervention. With
these changes, we were able to run the entire bootstrap chain both in a VM and on physical hardware.

Additionally, we showed that the bootstrapped OS can be used to create installation media for
other computers. That is also possible for foreign architectures through cross�compilation.

While it increases the trustworthiness of the resulting OS, running the entire full�source bootstrap
increases the installation procedure’s computational cost drastically. We discussed how binary
caching and installation media can alleviate this and offer users flexibility in how much time and
resources they are willing to invest in the security of their OS. Extending on that, we explained how
reproducible builds may make this consideration redundant by allowing build results to be verified
through consensus among independent builders.

7.1 Future Work

To make it available to all Nix and NixOS users, we propose integrating the inner bootstrap chain into
upstream Nixpkgs. For this purpose, the packages introduced by Aux Foundation and our bootstrap
should be added to the existing minimal-bootstrap package set. To avoid breaking compatibility
with non�x86 platforms, the full�source bootstrap should be introduced only for platforms where the
required bootstrap seeds are available. The remaining platforms continue to use the precompiled
bootstrapTools packages.

The bootstrap chain we built is not necessarily optimal yet. It might be possible to speed up the
build process by removing superfluous (re�)builds. For example, it might be possible to build the
64�bit bootstrap tools entirely with a musl�linked 32�bit toolchain, eliminating the need to build a
glibc�linked toolchain first. It would likely be even quicker to build the 64�bit bootstrap tools directly,
without using an i686-linux Nixpkgs instance for cross�compilation.
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7.1 Conclusion – Future Work

Another area where additional work is needed is investigating which other precompiled bootstrap
compilers Nixpkgs uses and how they can be replaced with bootstrapped versions. Ideally, as long as
proprietary packages are not enabled, every installable package in Nixpkgs should be compiled from
source, either locally or by a builder that pushes it to a binary cache.
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L I S T  O F  A B B R E V I A T I O N S

CPU central processing unit NIC network interface controller

DHCP the Dynamic Host Configuration
Protocol

OS operating system

DSL domain�specific language PR pull request

FHS the Filesystem Hierarchy Standard QCOW QEMU Copy�On�Write

FOD fixed�output derivation RAM random access memory

FOSS free and open�source software RPM the RPM Package Manager

GCC the GNU Compiler Collection SHA�256 the Secure Hash Algorithm (256
bit)

GRUB the Grand Unified Bootloader SSH secure shell

GiB Gibibyte(s) UEFI the Unified Extensible Firmware In�
terface

HTTP the Hypertext Transfer Protocol URL uniform resource locator

I/O input/output VM virtual machine

IP Internet Protocol attrset attribute set

JSON JavaScript Object Notation ca�derivation content�addressed derivation

KVM Kernel�based Virtual Machine dpkg the Debian Package Manager

MBR master boot record initramfs initial RAM file system

NAR Nix Archive tcc the Tiny C Compiler
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